Do not open this Test Booklet until you are asked to do so.

Read carefully the Instructions on the Back Cover of this Test Booklet.

Important Instructions:
1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on Side-1 and Side-2 carefully with blue/black ball point pen only.

2. The test is of 3 hours duration and this Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.

3. Use Blue/Black Ball Point Pen only for writing particulars on this page/mark responses.

4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.

5. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.

6. The CODE for this Booklet is ZZ. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.

7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.

8. Use of white fluid for correction is not permissible on the Answer Sheet.
1. A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of 27°C two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz, the velocity of sound in air at 27°C is

(1) 330 m/s
(2) 339 m/s
(3) 390 m/s
(4) 350 m/s

2. An electron falls from rest through a vertical distance h in a uniform and vertically upward directed electric field E. The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparison to the time of fall of the proton is

(1) smaller
(2) 5 times greater
(3) equal
(4) 10 times greater

3. A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is 20 m/s² at a distance of 5 m from the mean position. The time period of oscillation is

(1) 2π s
(2) π s
(3) 1 s
(4) 2 s

4. The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A, is

(1) independent of the distance between the plates.
(2) linearly proportional to the distance between the plates.
(3) inversely proportional to the distance between the plates.
(4) proportional to the square root of the distance between the plates.

5. Current sensitivity of a moving coil galvanometer is 5 div/mA and its voltage sensitivity (angular deflection per unit voltage applied) is 20 div/V. The resistance of the galvanometer is

(1) 40 Ω
(2) 25 Ω
(3) 500 Ω
(4) 250 Ω

6. A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work required to do this comes from

(1) the current source
(2) the magnetic field
(3) the induced electric field due to the changing magnetic field
(4) the lattice structure of the material of the rod

7. An inductor 20 mH, a capacitor 100 μF and a resistor 50 Ω are connected in series across a source of emf, V = 10 sin 314 t. The power loss in the circuit is

(1) 0.79 W
(2) 0.43 W
(3) 1.13 W
(4) 2.74 W

8. A metallic rod of mass per unit length 0.5 kg m⁻¹ is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is

(1) 7.14 A
(2) 5.98 A
(3) 11.32 A
(4) 14.76 A
A carbon resistor of \((47 \pm 4.7) \text{k}\Omega\) is to be marked with rings of different colours for its identification. The colour code sequence will be:

1. Violet - Yellow - Orange - Silver
2. Yellow - Violet - Orange - Silver
3. Green - Orange - Violet - Gold
4. Yellow - Green - Violet - Gold

10. A set of 'n' equal resistors, of value 'R' each, are connected in series to a battery of emf 'E' and internal resistance 'R'. The current drawn is I. Now, the 'n' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I. The value of 'n' is:

1. 10
2. 11
3. 9
4. 20

11. A battery consists of a variable number 'n' of identical cells (having internal resistance 'r' each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n?

12. In Young's double slit experiment the separation d between the slits is 2 mm, the wavelength \(\lambda\) of the light used is 5896 Å and distance D between the screen and slits is 100 cm. It is found that the angular width of the fringes is 0.20°. To increase the fringe angular width to 0.21° (with same \(\lambda\) and D) the separation between the slits needs to be changed to:

1. 1.8 mm
2. 1.9 mm
3. 1.7 mm
4. 2.1 mm

13. An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens of:

1. small focal length and large diameter
2. large focal length and small diameter
3. small focal length and small diameter
4. large focal length and large diameter

14. Unpolarised light is incident from air on a plane surface of a material of refractive index '\(\mu\)' At a particular angle of incidence 'i', it is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation?

1. Reflected light is polarised with its electric vector parallel to the plane of incidence
2. Reflected light is polarised with its electric vector perpendicular to the plane of incidence
3. \(i = \tan^{-1}\left(\frac{1}{\mu}\right)\)
4. \(i = \sin^{-1}\left(\frac{1}{\mu}\right)\)
23. In the combination of the following gates the output Y can be written in terms of inputs A and B as

\[A \cdot \overline{B} \]

\[A \cdot B + \overline{A} \cdot B \]

\[A + B \]

\[\overline{A} \cdot B + A \cdot B \]

24. In the circuit shown in the figure, the input voltage \(V_i = 20 \text{ V} \), \(V_{BE} = 0 \) and \(V_{CE} = 0 \). The values of \(I_B \), \(I_C \) and \(\beta \) are given by

\[20 \text{ V} \]

\[4 \text{ kΩ} \]

\[500 \text{ kΩ} \]

(1) \(I_B = 40 \mu A, I_C = 10 \text{ mA}, \beta = 250 \)

(2) \(I_B = 25 \mu A, I_C = 5 \text{ mA}, \beta = 200 \)

(3) \(I_B = 40 \mu A, I_C = 5 \text{ mA}, \beta = 125 \)

(4) \(I_B = 20 \mu A, I_C = 5 \text{ mA}, \beta = 250 \)

25. In a p-n junction diode, change in temperature due to heating

(1) affects only reverse resistance

(2) affects only forward resistance

(3) affects the overall V - I characteristics of p-n junction

(4) does not affect resistance of p-n junction

26. A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere?

(1) Angular velocity

(2) Moment of inertia

(3) Angular momentum

(4) Rotational kinetic energy

27. The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are \(K_A \), \(K_B \) and \(K_C \), respectively. AC is the major axis and SB is perpendicular to AC at the position of the Sun S as shown in the figure. Then

\[\begin{align*}
K_A &< K_B < K_C \\
K_A &> K_B > K_C \\
K_B &> K_A > K_C \\
K_B &< K_A < K_C
\end{align*} \]

28. If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is not correct?

(1) Raindrops will fall faster.

(2) Walking on the ground would become more difficult.

(3) 'g' on the Earth will not change.

(4) Time period of a simple pendulum on the Earth would decrease.

29. A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy \((K_t) \) as well as rotational kinetic energy \((K_r) \) simultaneously. The ratio \(K_t : (K_t + K_r) \) for the sphere is

(1) \(7 : 10 \)

(2) \(5 : 7 \)

(3) \(2 : 5 \)

(4) \(10 : 7 \)
30. A small sphere of radius 'r' falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to
(1) r^3
(2) r^2
(3) r^4
(4) r^5

31. A sample of 0.1 g of water at 100°C and normal pressure (1.013 x 10^6 Nm^-2) requires 54 cal of heat energy to convert to steam at 100°C. If the volume of the steam produced is 167.1 cc, the change in internal energy of the sample, is
(1) 104.3 J
(2) 208.7 J
(3) 84.5 J
(4) 42.2 J

32. Two wires are made of the same material and have the same volume. The first wire has cross-sectional area A and the second wire has cross-sectional area 3A. If the length of the first wire is increased by Δl on applying a force F, how much force is needed to stretch the second wire by the same amount?
(1) 9 F
(2) 6 F
(3) F
(4) 4 F

33. The power radiated by a black body is P and it radiates maximum energy at wavelength, λ_0. If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4}\lambda_0$, the power radiated by it becomes nP. The value of n is
(1) $\frac{3}{4}$
(2) $\frac{4}{3}$
(3) $\frac{81}{256}$
(4) $\frac{256}{81}$

34. At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere?
(Given:
Mass of oxygen molecule (m) = 2.76 x 10^{-25} kg
Boltzmann's constant k_B = 1.38 x 10^{-23} J K^{-1})
(1) 2.508 x 10^4 K
(2) 8.360 x 10^4 K
(3) 1.254 x 10^4 K
(4) 5.016 x 10^4 K

35. The volume (V) of a monatomic gas varies with its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B, is
(1) $\frac{2}{5}$
(2) $\frac{2}{3}$
(3) $\frac{2}{7}$
(4) $\frac{1}{3}$

36. The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is 20 cm, the length of the open organ pipe is
(1) 13.2 cm
(2) 8 cm
(3) 16 cm
(4) 12.5 cm

37. The efficiency of an ideal heat engine working between the freezing point and boiling point of water, is
(1) 26.8%
(2) 20%
(3) 12.5%
(4) 6.25%
38. A body initially at rest and sliding along a frictionless track from a height \(h \) (as shown in the figure) just completes a vertical circle of diameter \(AB = D \). The height \(h \) is equal to

- (1) \(\frac{3}{2} D \)
- (2) \(D \)
- (3) \(\frac{5}{4} D \)
- (4) \(\frac{7}{5} D \)

39. Three objects, \(A \) : (a solid sphere), \(B \) : (a thin circular disk) and \(C \) : (a circular ring), each have the same mass \(M \) and radius \(R \). They all spin with the same angular speed \(\omega \) about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation

- (1) \(W_C > W_B > W_A \)
- (2) \(W_A > W_B > W_C \)
- (3) \(W_A > W_C > W_B \)
- (4) \(W_B > W_A > W_C \)

40. Which one of the following statements is incorrect?

- (1) Rolling friction is smaller than sliding friction.
- (2) Limiting value of static friction is directly proportional to normal reaction.
- (3) Coefficient of sliding friction has dimensions of length.
- (4) Frictional force opposes the relative motion.

41. A moving block having mass \(m \), collides with another stationary block having mass \(4m \). The lighter block comes to rest after collision. When the initial velocity of the lighter block is \(v \), then the value of coefficient of restitution \(e \) will be

- (1) 0.5
- (2) 0.25
- (3) 0.4
- (4) 0.8

42. A block of mass \(m \) is placed on a smooth inclined wedge ABC of inclination \(\theta \) as shown in the figure. The wedge is given an acceleration \(a \) towards the right. The relation between \(a \) and \(\theta \) for the block to remain stationary on the wedge is

- (1) \(a = \frac{g}{\cos \theta} \)
- (2) \(a = \frac{g}{\sin \theta} \)
- (3) \(a = g \tan \theta \)
- (4) \(a = g \cos \theta \)

43. A toy car with charge \(q \) moves on a frictionless horizontal plane surface under the influence of a uniform electric field \(\vec{E} \). Due to the force \(q \vec{E} \), its velocity increases from 0 to 6 m/s in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively

- (1) 2 m/s, 4 m/s
- (2) 1 m/s, 3 m/s
- (3) 1.5 m/s, 3 m/s
- (4) 1 m/s, 3.5 m/s

44. The moment of the force, \(\vec{F} = 4 \hat{i} + 5 \hat{j} - 6 \hat{k} \) at \((2, 0, -3) \), about the point \((2, -2, -2) \), is given by

- (1) \(-8 \hat{i} - 4 \hat{j} - 7 \hat{k}\)
- (2) \(-4 \hat{i} - \hat{j} - 8 \hat{k}\)
- (3) \(-7 \hat{i} - 4 \hat{j} - 8 \hat{k}\)
- (4) \(-7 \hat{i} - 8 \hat{j} - 4 \hat{k}\)

45. A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm. The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm, the correct diameter of the ball is

- (1) 0.521 cm
- (2) 0.525 cm
- (3) 0.529 cm
- (4) 0.535 cm
46. The difference between spermiogenesis and spermiation is:
 (1) In spermiogenesis spermatids are formed, while in spermiation spermatozoa are formed.
 (2) In spermiogenesis spermatozoa are formed, while in spermiation spermatids are formed.
 (3) In spermiogenesis spermatozoa are formed, while in spermiation spermatids are released from sertoli cells into the cavity of seminiferous tubules.
 (4) In spermiogenesis spermatozoa from sertoli cells are released into the cavity of seminiferous tubules, while in spermiation spermatozoa are formed.

47. The annion of mammalian embryo is derived from:
 (1) ectoderm and mesoderm
 (2) endoderm and mesoderm
 (3) ectoderm and endoderm
 (4) mesoderm and trophoblast

48. The contraceptive ‘SAHELI’
 (1) blocks estrogen receptors in the uterus, preventing eggs from getting implanted.
 (2) increases the concentration of estrogen and prevents ovulation in females.
 (3) is a post-coital contraceptive.
 (4) is an IUD.

49. Hormones secreted by the placenta to maintain pregnancy are:
 (1) hCG, hPL, progestogens, prolactin
 (2) hCG, hPL, estrogens, relaxin, oxytocin
 (3) hCG, progestogens, estrogens, glucocorticoids
 (4) hCG, hPL, progestogens, estrogens

50. Match the items given in Column I with those in Column II and select the correct option given below:
 Column I
 a. Proliferative Phase
 b. Secretory Phase
 c. Menstruation
 (1) iii
 (2) i
 (3) iii
 (4) ii

 Column II
 i. Breakdown of endometrial lining
 ii. Follicular Phase
 iii. Luteal Phase

51. All of the following are part of an operon except:
 (1) an operator
 (2) structural genes
 (3) a promoter
 (4) an enhancer

52. A woman has an X-linked condition on one of her X chromosomes. This chromosome can be inherited by:
 (1) Only daughters
 (2) Only sons
 (3) Both sons and daughters
 (4) Only grandchildren

53. According to Hugo de Vries, the mechanism of evolution is:
 (1) Multiple step mutations
 (2) Saltation
 (3) Minor mutations
 (4) Phenotypic variations

54. AGGTATCGCAT is a sequence from the coding strand of a gene. What will be the corresponding sequence of the transcribed mRNA?
 (1) AGGUAUGCACA
 (2) UGGTUGCAT
 (3) UCUAGCGUA
 (4) ACCUAUGCACG

55. Among the divergent evolutionary phenomena:
 (1) Polyplody
 (2) Saltation
 (3) Phenotypic variations
 (4) Multiple step mutations

56. Convert the following nutrients into their corresponding units:
 (1) 200 kJ
 (2) 500 kJ
 (3) 800 kJ
 (4) 1000 kJ

57. Which of the following is true of cancer cells?
 (1) They have a slower growth rate than normal cells.
 (2) They have a lower number of genes than normal cells.
 (3) They have more mitochondria than normal cells.
 (4) They have more DNA than normal cells.

58. The modern evolutionary theory of Charles Darwin is:
 (1) Evolution by saltation
 (2) Evolution by multiple step mutations
 (3) Evolution by natural selection
 (4) Evolution by phenotypic variation

59. Which of the following is an example of a post-coital contraceptive?
 (1) IUD
 (2) Condom
 (3) Pill
 (4) Birth control injection

60. AGGTATCGCAT is a sequence from the coding strand of a gene. What will be the corresponding sequence of the transcribed mRNA?
 (1) AGGUAUGCACA
 (2) UGGTUGCAT
 (3) UCUAGCGUA
 (4) ACCUAUGCACG
55. Among the following sets of examples for divergent evolution, select the incorrect option:
 (1) Forelimbs of man, bat and cheetah
 (2) Heart of bat, man and cheetah
 (3) Eye of octopus, bat and man
 (4) Brain of bat, man and cheetah

56. Conversion of milk to curd improves its nutritional value by increasing the amount of
 (1) Vitamin D
 (2) Vitamin A
 (3) Vitamin E
 (4) Vitamin B₁₂

57. Which of the following is not an autoimmune disease?
 (1) Psoriasis
 (2) Rheumatoid arthritis
 (3) Vitiligo
 (4) Alzheimer's disease

58. The similarity of bone structure in the forelimbs of many vertebrates is an example of
 (1) Homology
 (2) Analogy
 (3) Adaptive radiation
 (4) Convergent evolution

59. Which of the following characteristics represent 'Inheritance of blood groups' in humans?
 a. Dominance
 b. Co-dominance
 c. Multiple allele
 d. Incomplete dominance
 e. Polygenic inheritance

60. In which disease does mosquito transmitted pathogen cause chronic inflammation of lymphatic vessels?
 (1) Elephantiasis
 (2) Ascariasis
 (3) Amoebiasis
 (4) Ringworm disease

61. All of the following are included in 'Ex-situ conservation' except
 (1) Wildlife safari parks
 (2) Sacred groves
 (3) Seed banks
 (4) Botanical gardens

62. Which part of poppy plant is used to obtain the drug "Smack"?
 (1) Flowers
 (2) Latex
 (3) Leaves
 (4) Roots

63. In a growing population of a country,
 (1) pre-reproductive individuals are more than the reproductive individuals.
 (2) reproductive individuals are less than the post-reproductive individuals.
 (3) pre-reproductive individuals are less than the reproductive individuals.
 (4) reproductive and pre-reproductive individuals are equal in number.

64. Which one of the following population interactions is widely used in medical science for the production of antibiotics?
 (1) Commensalism
 (2) Mutualism
 (3) Amensalism
 (4) Parasitism

65. Match the items given in Column I with those in Column II and select the correct option given below:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Eutrophication</td>
<td>i. UV-B radiation</td>
</tr>
<tr>
<td>b. Sanitary landfill</td>
<td>ii. Deforestation</td>
</tr>
<tr>
<td>c. Snow blindness</td>
<td>iii. Nutrient enrichment</td>
</tr>
<tr>
<td>d. Jhum cultivation</td>
<td>iv. Waste disposal</td>
</tr>
</tbody>
</table>

 a b c d
 (1) ii i iii iv
 (2) i iii iv ii
 (3) i ii iv iii
 (4) iii iv i ii
66. Which of the following options correctly represents the lung conditions in asthma and emphysema, respectively?
 (1) Inflammation of bronchioles; Decreased respiratory surface
 (2) Increased number of bronchioles; Increased respiratory surface
 (3) Decreased respiratory surface; Inflammation of bronchioles
 (4) Increased respiratory surface; Inflammation of bronchioles

67. Match the items given in Column I with those in Column II and select the correct option given below:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Tricuspid valve</td>
<td>i. Between left atrium and left ventricle</td>
</tr>
<tr>
<td>b. Bicuspid valve</td>
<td>ii. Between right ventricle and pulmonary artery</td>
</tr>
<tr>
<td>c. Semilunar valve</td>
<td>iii. Between right atrium and right ventricle</td>
</tr>
</tbody>
</table>

 a b c
 (1) iii i ii
 (2) i iii ii
 (3) ii i iii
 (4) i ii iii

68. Match the items given in Column I with those in Column II and select the correct option given below:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Tidal volume</td>
<td>i. 2500 - 3000 mL</td>
</tr>
<tr>
<td>b. Inspiratory Reserve volume</td>
<td>ii. 1100 - 1200 mL</td>
</tr>
<tr>
<td>c. Expiratory Reserve volume</td>
<td>iii. 500 - 550 mL</td>
</tr>
<tr>
<td>d. Residual volume</td>
<td>iv. 1000 - 1100 mL</td>
</tr>
</tbody>
</table>

 a b c d
 (1) iii ii i iv
 (2) ii i iv ii
 (3) iv iii ii i
 (4) i iv ii iii

69. Which of the following is an amino acid derived hormone?
 (1) Epinephrine
 (2) Ecdysone
 (3) Estriol
 (4) Estradiol

70. Which of the following structures or regions is incorrectly paired with its function?
 (1) Medulla oblongata: controls respiration and cardiovascular reflexes.
 (2) Limbic system: consists of fibre tracts that interconnect different regions of brain; controls movement.
 (3) Corpus callosum: band of fibers connecting left and right cerebral hemispheres.
 (4) Hypothalamus: production of releasing hormones and regulation of temperature, hunger and thirst.

71. The transparent lens in the human eye is held in its place by
 (1) ligaments attached to the ciliary body
 (2) ligaments attached to the iris
 (3) smooth muscles attached to the ciliary body
 (4) smooth muscles attached to the iris

72. Which of the following hormones can play a significant role in osteoporosis?
 (1) Aldosterone and Prolactin
 (2) Progesterone and Aldosterone
 (3) Parathyroid hormone and Prolactin
 (4) Estrogen and Parathyroid hormone
73. Which of the following gastric cells indirectly help in erythropoiesis?
(1) Chief cells
(2) Mucous cells
(3) Parietal cells
(4) Goblet cells

74. Match the items given in Column I with those in Column II and select the correct option given below:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Fibrinogen</td>
<td>i. Osmotic balance</td>
</tr>
<tr>
<td>b. Globulin</td>
<td>ii. Blood clotting</td>
</tr>
<tr>
<td>c. Albumin</td>
<td>iii. Defence mechanism</td>
</tr>
</tbody>
</table>

a b c
(1) iii ii i
(2) i ii iii
(3) ii iii i
(4) i iii ii

75. Which of the following is an occupational respiratory disorder?
(1) Anthracis
(2) Silicosis
(3) Emphysema
(4) Botulism

76. Calcium is important in skeletal muscle contraction because it
(1) binds to troponin to remove the masking of active sites on actin for myosin.
(2) activates the myosin ATPase by binding to it.
(3) prevents the formation of bonds between the myosin cross bridges and the actin filament.
(4) detaches the myosin head from the actin filament.

77. Select the incorrect match:
(1) Lambrush – Diplotene bivalents chromosomes
(2) Allosomes – Sex chromosomes
(3) Polytene – Oocysts of amphibians chromosomes
(4) Submetacentric – L-shaped chromosomes

78. Nasal bodies are mainly composed of
(1) Proteins and lipids
(2) DNA and RNA
(3) Free ribosomes and RER
(4) Nucleic acids and SER

79. Which of these statements is incorrect?
(1) Enzymes of TCA cycle are present in mitochondrial matrix.
(2) Glycolysis occurs in cytosol.
(3) Oxidative phosphorylation takes place in outer mitochondrial membrane.
(4) Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.

80. Which of the following events does not occur in rough endoplasmic reticulum?
(1) Protein folding
(2) Protein glycosylation
(3) Phospholipid synthesis
(4) Cleavage of signal peptide

81. Many ribosomes may associate with a single mRNA to form multiple copies of a polypeptide simultaneously. Such strings of ribosomes are termed as
(1) Polysome
(2) Polyhedral bodies
(3) Nucleosome
(4) Plastidome

82. Which of the following terms describe human dentition?
(1) Thedont, Diphyodont, Homodont
(2) Thedont, Diphyodont, Heterodont
(3) Pleurodont, Diphyodont, Heterodont
(4) Pleurodont, Monophyodont, Homodont
83. Identify the vertebrate group of animals characterized by crop and gizzard in its digestive system.
 (1) Amphibia
 (2) Reptilia
 (3) Osteichthyes
 (4) Aves

84. Which one of these animals is not a homeotherm?
 (1) Mucropus
 (2) Chelone
 (3) Psittacula
 (4) Camelus

85. Which of the following features is used to identify a male cockroach from a female cockroach?
 (1) Presence of a boat shaped sternum on the 9th abdominal segment
 (2) Presence of caudal styles
 (3) Presence of anal cerci
 (4) Forewings with darker tegmina

86. Which of the following organisms are known as chief producers in the oceans?
 (1) Dinoflagellates
 (2) Diatoms
 (3) Euglenoids
 (4) Cyanobacteria

87. Ciliates differ from all other protozoans in
 (1) using flagella for locomotion
 (2) having a contractile vacuole for removing excess water
 (3) having two types of nuclei
 (4) using pseudopodia for capturing prey

88. Which of the following animals does not undergo metamorphosis?
 (1) Earthworm
 (2) Tunicate
 (3) Starfish
 (4) Moth

89. Match the items given in Column I with those in Column II and select the correct option given below:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Part of Excretory System</td>
</tr>
<tr>
<td>a. Ultrafiltration</td>
<td>i. Henle's loop</td>
</tr>
<tr>
<td>b. Concentration of urine</td>
<td>ii. Ureter</td>
</tr>
<tr>
<td>c. Transport of urine</td>
<td>iii. Urinary bladder</td>
</tr>
<tr>
<td>d. Storage of urine</td>
<td>iv. Malpighian corpuscle</td>
</tr>
<tr>
<td>v. Proximal convoluted tubule</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>v</td>
<td>i</td>
<td>iii</td>
</tr>
<tr>
<td>iv</td>
<td>i</td>
<td>ii</td>
<td>iii</td>
</tr>
<tr>
<td>v</td>
<td>iv</td>
<td>i</td>
<td>i</td>
</tr>
</tbody>
</table>

90. Match the items given in Column I with those in Column II and select the correct option given below:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycosuria</td>
<td>Accumulation of uric acid in joints</td>
</tr>
<tr>
<td>Gout</td>
<td>Mass of crystallised salts within the kidney</td>
</tr>
<tr>
<td>Renal calculi</td>
<td>Inflammation in glomeruli</td>
</tr>
<tr>
<td>Glomerular nephritis</td>
<td>Presence of glucose in urine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>ii</td>
<td>iv</td>
<td>i</td>
</tr>
<tr>
<td>ii</td>
<td>iii</td>
<td>i</td>
<td>iv</td>
</tr>
<tr>
<td>iv</td>
<td>i</td>
<td>iii</td>
<td>i</td>
</tr>
</tbody>
</table>

91. What is the mechanism of respiration?
 (1) It functions by diffusion
 (2) It functions by osmosis
 (3) It is the final stage of respiration
 (4) It is a nuclear reaction

92. Which one of the following is close relationship; none of the two, both or the other?
 (1) Hydrilla
 (2) Yucca
 (3) Viola
 (4) Banana

93. Oxygen is not
 (1) Green substance
 (2) Nostoc
 (3) Chara
 (4) Cyclus

94. In which of the groups of plants?
 (1) Ferns
 (2) Ferns
 (3) Both ferns and mosses
 (4) Free from chlorophyll

95. Double fertilisation
 (1) Fusion of two male sperms with two female nuclei
 (2) Fusion of a male and female nuclei
 (3) Syngamy
 (4) Fusion of a sperm with an egg nucleus

96. Which of the following maintain homeostasis?
 (1) Magnesium
 (2) Sodium
 (3) Calcium
 (4) Potassium

97. Pollen grain is liquid nitrogen
 (1) −12 °C
 (2) −80 °C
 (3) −16 °C
 (4) −196 °C
91. What is the role of NAD⁺ in cellular respiration?
 (1) It functions as an enzyme.
 (2) It functions as an electron carrier.
 (3) It is the final electron acceptor for anaerobic respiration.
 (4) It is a nucleotide source for ATP synthesis.

92. Which one of the following plants shows a very close relationship with a species of moth, where none of the two can complete its life cycle without the other?
 (1) Hydrilla
 (2) Yucca
 (3) Viola
 (4) Banana

93. Oxygen is **not** produced during photosynthesis by
 (1) Green sulphur bacteria
 (2) Nostoc
 (3) Chara
 (4) Cyanos

94. In which of the following forms is iron absorbed by plants?
 (1) Ferric
 (2) Ferrous
 (3) Both ferric and ferrous
 (4) Free element

95. Double fertilization is
 (1) Fusion of two male gametes of a pollen tube with two different eggs
 (2) Fusion of one male gamete with two polar nuclei
 (3) Syngamy and triple fusion
 (4) Fusion of two male gametes with one egg

96. Which of the following elements is responsible for maintaining turgor in cells?
 (1) Magnesium
 (2) Sodium
 (3) Calcium
 (4) Potassium

97. Pollen grains can be stored for several years in liquid nitrogen having a temperature of
 (1) −120°C
 (2) −80°C
 (3) −160°C
 (4) −196°C

98. Which among the following is **not** a prokaryote?
 (1) Saccharomyces
 (2) Mycobacterium
 (3) Oscillatoria
 (4) Nostoc

99. The two functional groups characteristic of sugars are
 (1) hydroxyl and methyl
 (2) carbonyl and methyl
 (3) carbonyl and hydroxyl
 (4) carbonyl and phosphate

100. Which of the following is **not** a product of light reaction of photosynthesis?
 (1) ATP
 (2) NADH
 (3) Oxygen
 (4) NADPH

101. Stomatal movement is **not** affected by
 (1) Temperature
 (2) Light
 (3) CO₂ concentration
 (4) O₂ concentration

102. The Golgi complex participates in
 (1) Fatty acid breakdown
 (2) Formation of secretory vesicles
 (3) Activation of amino acid
 (4) Respiration in bacteria

103. Which of the following is true for nucleolus?
 (1) Larger nucleoli are present in dividing cells.
 (2) It is a membrane-bound structure.
 (3) It is a site for active ribosomal RNA synthesis.
 (4) It takes part in spindle formation.

104. Stomata in grass leaf are
 (1) Dumb-bell shaped
 (2) Kidney shaped
 (3) Barrel shaped
 (4) Rectangular

105. The stage during which separation of the paired homologous chromosomes begins is
 (1) Pachytene
 (2) Diplotene
 (3) Zygotene
 (4) Diakinesis
106. Which of the following is commonly used as a vector for introducing a DNA fragment in human lymphocytes?
(1) Retrovirus
(2) Ti plasmid
(3) pBR 322
(4) A phage

107. Use of biorecources by multinational companies and organisations without authorisation from the concerned country and its people is called
(1) Bio-infringement
(2) Biopiracy
(3) Bioexploitation
(4) Biodegradation

108. In India, the organisation responsible for assessing the safety of introducing genetically modified organisms for public use is
(1) Indian Council of Medical Research (ICMR)
(2) Council for Scientific and Industrial Research (CSIR)
(3) Genetic Engineering Appraisal Committee (GEAC)
(4) Research Committee on Genetic Manipulation (RCGM)

109. The correct order of steps in Polymerase Chain Reaction (PCR) is
(1) Extension, Denaturation, Annealing
(2) Annealing, Extension, Denaturation
(3) Denaturation, Annealing, Extension
(4) Denaturation, Extension, Annealing

110. Select the correct match:
(1) Ribozyme — Nucleic acid
(2) F₂ × Recessive parent — Dihybrid cross
(3) G. Mendel — Transformation
(4) T. H. Morgan — Transduction

111. A ‘new’ variety of rice was patented by a foreign company, though such varieties have been present in India for a long time. This is related to
(1) Co-667
(2) Sharbati Sonora
(3) Basmati
(4) Lerma Roja

112. Select the correct match:
(1) Alec Jeffreys — Streptococcus pneumoniae
(2) Alfred Hershey and Martha Chase — TMV
(3) Francois Jacob and Jacques Monod — Lac operon
(4) Matthew Meselson and F. Stahl — Pseudomonas

113. Which of the following has proved helpful in preserving pollen as fossils?
(1) Pollenkitt
(2) Cellulosic intine
(3) Sporopollenin
(4) Oil content

114. The experimental proof for semiconservation replication of DNA was first shown in a
(1) Fungus
(2) Bacterium
(3) Virus
(4) Plant

115. Which of the following pairs is wrongly matched?
(1) Starch synthesis in pea — Multiple alleles
(2) ABO blood grouping — Co-dominance
(3) T.H. Morgan — Linkage
(4) XO type sex determination

116. Offsets are produced by
(1) Meiotic divisions
(2) Mitotic divisions
(3) Parthenogenesis
(4) Parthenocarpy

117. Select the correct statement:
(1) Franklin Stahl coined the term “linkage”.
(2) Punnett square was developed by a British scientist.
(3) Transduction was discovered by S. Altman.
(4) Spleosome takes part in translation.

118. Which of the following flowers only once in its lifetime?
(1) Bamboo species
(2) Jackfruit
(3) Papaya
(4) Mango

119. Niche is
(1) all the biotic and abiotic environment
(2) the physical place
(3) the functional role it lives
(4) the range of needs to live

120. In stratosphere, oxygen acts as a catalyst in release of molecular
(1) Carbon
(2) Cl
(3) Oxygen
(4) Fe

121. What type of plant is obtained with hybridisation
(1) Invertebrates
(2) Pyramids
(3) Upright
(4) Upright

122. Which of these releases CO₂
(1) CO
(2) CO₂
(3) O₃
(4) SO₂

123. World Ozone Day is on
(1) 5th June
(2) 21st June
(3) 22nd March
(4) 16th September

124. Natality rises in
(1) Death
(2) Birth rate
(3) Number
(4) Number
119. Niche is
(1) all the biological factors in the organism’s environment
(2) the physical space where an organism lives
(3) the functional role played by the organism where it lives
(4) the range of temperature that the organism needs to live

120. In stratosphere, which of the following elements acts as a catalyst in degradation of ozone and release of molecular oxygen?
(1) Carbon
(2) Cl
(3) Oxygen
(4) Fe

121. What type of ecological pyramid would be obtained with the following data?
Secondary consumer: 120 g
Primary consumer: 60 g
Primary producer: 10 g
(1) Inverted pyramid of biomass
(2) Pyramid of energy
(3) Upright pyramid of biomass
(4) Upright pyramid of numbers

122. Which of the following is a secondary pollutant?
(1) CO
(2) CO₂
(3) O₃
(4) SO₂

123. World Ozone Day is celebrated on
(1) 5th June
(2) 21st April
(3) 22nd April
(4) 16th September

124. Natality refers to
(1) Death rate
(2) Birth rate
(3) Number of individuals entering a habitat
(4) Number of individuals leaving the habitat

125. Match the items given in Column I with those in Column II and select the correct option given below:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Herbarium</td>
<td>i. It is a place having a collection of preserved plants and animals.</td>
</tr>
<tr>
<td>b. Key</td>
<td>ii. A list that enumerates methodically all the species found in an area with brief description aiding identification.</td>
</tr>
<tr>
<td>c. Museum</td>
<td>iii. Is a place where dried and pressed plant specimens mounted on sheets are kept.</td>
</tr>
<tr>
<td>d. Catalogue</td>
<td>iv. A booklet containing a list of characters and their alternates which are helpful in identification of various taxa.</td>
</tr>
</tbody>
</table>

126. Which one is wrongly matched?
(1) Uniflagellate gametes – Polysiphonia
(2) Biflagellate zoospores – Brown algae
(3) Unicellular organism – Chlorella
(4) Gemma cups – Marchantia

127. After karyogamy followed by meiosis, spores are produced exogenously in
(1) Neurospora
(2) Alternaria
(3) Saccharomyces
(4) Agaricus

128. Winged pollen grains are present in
(1) Mustard
(2) Cycas
(3) Pinus
(4) Mango
147. The compound A on treatment with Na gives B, and with PCl₅ gives C. B and C react together to give diethyl ether. A, B and C are in the order

(1) C₂H₆OH, C₂H₅, C₂H₅Cl
(2) C₂H₅OH, C₂H₅Cl, C₂H₅ONa
(3) C₂H₅OH, C₂H₅ONa, C₂H₅Cl
(4) C₂H₅Cl, C₂H₅, C₂H₅OH

148. Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is

(1) CH = CH
(2) CH₂ = CH₂
(3) CH₄
(4) CH₃ - CH₃

149. The compound C₇H₈ undergoes the following reactions:

\[
\text{C}_7\text{H}_8 \xrightarrow{3 \text{Cl}_2/\Delta} \text{A} \xrightarrow{\text{Br}_2/\text{Fe}} \text{B} \xrightarrow{\text{Zn}/\text{HCl}} \text{C}
\]

The product ‘C’ is

(1) m-bromotoluene
(2) o-bromotoluene
(3) p-bromotoluene
(4) 3-bromo-2,4,6-trichlorotoluene

150. Which oxide of nitrogen is not a common pollutant introduced into the atmosphere both due to natural and human activity?

(1) N₂O₅
(2) NO₂
(3) NO
(4) N₂O
129. Pneumatophores occur in
 (1) Halophytes
 (2) Free-floating hydrophytes
 (3) Submerged hydrophytes
 (4) Carnivorous plants

130. Plants having little or no secondary growth are
 (1) Grasses
 (2) Deciduous angiosperms
 (3) Cycads
 (4) Conifers

131. Casperian strips occur in
 (1) Epidermis
 (2) Pericycle
 (3) Endodermis
 (4) Cortex

132. Secondary xylem and phloem in dicot stem are produced by
 (1) Apical meristems
 (2) Vascular cambium
 (3) Axillary meristems
 (4) Phellogen

133. Select the wrong statement:
 (1) Cell wall is present in members of Fungi and Plantae.
 (2) Mushrooms belong to Basidiomycetes.
 (3) Mitochondria are the powerhouse of the cell in all kingdoms except Monera.
 (4) Pseudopodia are locomotory and feeding structures in Sporozoa.

134. Which of the following statements is correct?
 (1) Ovules are not enclosed by ovary wall in gymnosperms.
 (2) Selaginella is heterosporous, while Salvinia is homosporous.
 (3) Stems are usually unbranched in both Cocos and Cedrus.
 (4) Horsetails are gymnosperms.

135. Sweet potato is a modified
 (1) Stem
 (2) Adventitious root
 (3) Rhizome
 (4) Tap root

136. The correct order of N-compounds in decreasing order of oxidation states is
 (1) HNO₃, NO, N₂, NH₄Cl
 (2) HNO₃, NO, NH₄Cl, N₂
 (3) NH₄Cl, N₂, NO, HNO₃
 (4) HNO₃, NH₄Cl, NO, N₂

137. The correct order of atomic radii in group 13 elements is
 (1) B < Al < In < Ga < Tl
 (2) B < Al < Ga < In < Tl
 (3) B < Ga < Al < In < Tl
 (4) B < Ga < Al < Tl < In

138. Considering Ellingham diagram, which of the following metals can be used to reduce alumina?
 (1) Fe
 (2) Zn
 (3) Cu
 (4) Mg

139. Which one of the following elements is unable to form MF₆⁻ ion?
 (1) Ga
 (2) Al
 (3) In
 (4) B

140. Which of the following statements is not true for halogens?
 (1) All form monobasic oxyacids.
 (2) All are oxidizing agents.
 (3) Chlorine has the highest electron-gain enthalpy.
 (4) All but fluorine show positive oxidation states.

141. In the structure of ClF₃, the number of lone pairs of electrons on central atom ‘Cl’ is
 (1) one
 (2) two
 (3) three
 (4) four
151. Which of the following molecules represents the order of hybridisation sp², sp³, sp, sp from left to right atoms?
(1) HC = C - C = CH
(2) CH₂ = CH - C = CH
(3) CH₃ - CH = CH - CH₃
(4) CH₂ = CH - CH = CH₂

152. Which of the following carbocations is expected to be most stable?

(1)
(2)
(3)
(4)

153. Which of the following is correct with respect to - I effect of the substituents? (R = alkyl)
(1) -NH₂ < - OR < - F
(2) -NR₂ < - OR < - F
(3) -NR₂ > - OR > - F
(4) -NH₂ > - OR > - F

154. In the reaction

\[\text{OH} + \text{CHCl₃} + \text{NaOH} \rightarrow \text{O}^+ \text{Na}^- \]

the electrophile involved is
(1) dichloromethyl cation (CHCl₂⁺)
(2) formyl cation (CHO⁺)
(3) dichlorocarbene (Cl₂C)
(4) dichloromethyl anion (CH₂Cl⁻)

155. Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their
(1) formation of intramolecular H-bonding
(2) formation of carboxylate ion
(3) formation of intermolecular H-bonding
(4) more extensive association of carboxylic acid via van der Waals force of attraction

156. Compound A, C₉H₁₄O, is found to react with NaOH (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell.
A and Y are respectively
(1) \(\text{H}_3\text{C} - \text{CH}_2 - \text{OH} \) and I₂
(2) \(\text{CH}_2 - \text{CH}_2 - \text{OH} \) and I₂
(3) \(\text{CH}_3 - \text{OH} \) and I₂
(4) \(\text{CH}_3 - \text{CH}_3 \) and I₂

158. Which of the following is a zwit
(1)
(2)
(3)
(4)

SPACE FOR ROUGH WORK
158. Which of the following compounds can form a zwitterion?

(1) Aniline
(2) Acetanilide
(3) Glycine
(4) Benzoic acid

159. For the redox reaction

\[\text{MnO}_4^- + \text{C}_2\text{O}_4^{2-} + \text{H}^+ \rightarrow \text{Mn}^{2+} + \text{CO}_2 + \text{H}_2\text{O} \]

the correct coefficients of the reactants for the balanced equation are

<table>
<thead>
<tr>
<th>Reactant</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO_4^-</td>
<td>16</td>
</tr>
<tr>
<td>C_2O_4^{2-}</td>
<td>5</td>
</tr>
<tr>
<td>H^+</td>
<td>2</td>
</tr>
<tr>
<td>Mn^{2+}</td>
<td>2</td>
</tr>
<tr>
<td>CO_2</td>
<td>16</td>
</tr>
<tr>
<td>H_2O</td>
<td>5</td>
</tr>
</tbody>
</table>

160. Which one of the following conditions will favour maximum formation of the product in the reaction,

\[\text{A}_2(g) + \text{B}_2(g) \rightleftharpoons \text{X}_2(g) \quad \Delta H = -X \text{kJ} \]

(1) Low temperature and high pressure
(2) Low temperature and low pressure
(3) High temperature and low pressure
(4) High temperature and high pressure

161. When initial concentration of the reactant is doubled, the half-life period of a zero order reaction

(1) is halved
(2) is doubled
(3) remains unchanged
(4) is tripled

162. The correction factor 'a' to the ideal gas equation corresponds to

(1) density of the gas molecules
(2) volume of the gas molecules
(3) forces of attraction between the gas molecules
(4) electric field present between the gas molecules

163. The bond dissociation energies of \(X_2 \), \(Y_2 \) and \(XY \) are in the ratio of 1 : 0.5 : 1. \(\Delta H \) for the formation of \(XY \) is -200 kJ mol\(^{-1}\). The bond dissociation energy of \(X_2 \) will be

(1) 200 kJ mol\(^{-1}\)
(2) 100 kJ mol\(^{-1}\)
(3) 400 kJ mol\(^{-1}\)
(4) 800 kJ mol\(^{-1}\)
The solubility of BaSO₄ in water is $2.42 \times 10^{-3} \text{ g L}^{-1}$ at 298 K. The value of its solubility product (K_{sp}) will be

(Given molar mass of BaSO₄ = 233 g mol⁻¹)

1. $1.08 \times 10^{-10} \text{ mol}^2 \text{ L}^{-2}$
2. $1.08 \times 10^{-12} \text{ mol}^2 \text{ L}^{-2}$
3. $1.08 \times 10^{-8} \text{ mol}^2 \text{ L}^{-2}$
4. $1.08 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$

Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations:

a. 60 mL $\frac{M}{10}$ HCl + 40 mL $\frac{M}{10}$ NaOH
b. 55 mL $\frac{M}{10}$ HCl + 45 mL $\frac{M}{10}$ NaOH
c. 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH
d. 100 mL $\frac{M}{10}$ HCl + 100 mL $\frac{M}{10}$ NaOH

pH of which one of them will be equal to 1?

(1) b (2) a (3) c (4) d

On which of the following properties does the coagulating power of an ion depend?

(1) The magnitude of the charge on the ion alone
(2) The size of the ion alone
(3) The sign of charge on the ion alone
(4) Both magnitude and sign of the charge on the ion

Given van der Waals constant for NH₃, H₂, O₂, and CO₂ are respectively 4.17, 0.244, 1.86 and 3.59, which one of the following gases is most easily liquefied?

(1) NH₃ (2) H₂ (3) CO₂ (4) O₂

Iron carbonyl, Fe(CO)₉ is

(1) tetranuclear (2) mononuclear (3) dinuclear (4) trimuclear

The type of isomerism shown by the complex $[\text{CoCl}_2(\text{en})_2]$ is

(1) Geometrical isomerism (2) Coordination isomerism (3) Linkage isomerism (4) Ionization isomerism

Which one of the following ions exhibits d-d transition and paramagnetism as well?

(1) CrO₂⁻ (2) Cr₂O₇²⁻ (3) MnO₂⁻ (4) MnO₄⁻

The geometry and magnetic behaviour of the complex $[\text{Ni(CO)}_4]$ are

(1) square planar geometry and diamagnetic (2) tetrahedral geometry and diamagnetic (3) tetrahedral geometry and paramagnetic (4) square planar geometry and paramagnetic

Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the correct code:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Co³⁺</td>
<td>i. $\sqrt{6}$ B.M.</td>
</tr>
<tr>
<td>b. Cr³⁺</td>
<td>ii. $\sqrt{35}$ B.M.</td>
</tr>
<tr>
<td>c. Fe³⁺</td>
<td>iii. $\sqrt{3}$ B.M.</td>
</tr>
<tr>
<td>d. Ni²⁺</td>
<td>iv. $\sqrt{24}$ B.M.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) iv v ii i</td>
<td>(2) i ii iii iv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) iii iv i ii</td>
<td>(4) iv i ii iii</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Read carefully the following instructions:

1. Each candidate must show on demand his/her Admit Card to the Invigilator.

2. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.

3. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.

4. Use of Electronic/Manual Calculator is prohibited.

5. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.

6. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.

7. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.